Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine

نویسندگان

  • Zhenghong Gao
  • Chunyi Zhi
  • Yoshio Bando
  • Dmitri Golberg
  • Takeshi Serizawa
چکیده

Boron nitride nanotubes (BNNTs) are of intense scientific interest due to their unique physiochemical properties and prospective applications in various nanotechnologies, particularly nanobiomedicine. A critical problem hamper‐ ing the application processing of BNNTs is the outer sidewall functionalization, which is primarily acquired to lead BNNTs dispersible in various solvents. Furthermore, the surface of BNNTs should be intelligently designed and precisely controlled to satisfy the specific demands of different applications. For these purposes, covalent and noncovalent approaches have been factually developed to help to extend the full potential of applications. Important‐ ly, wrapping the outermost sidewall of BNNTs with either water-soluble polymers or biomolecules through weak noncovalent interactions has been proved to be efficient for giving BNNTs considerable dispersity in aqueous media, and endowing novel chemical functions to BNNTs with almost no change in their pristine physiochemical proper‐ ties. This article summarizes recent progress in this field and addresses future perspectives on the noncovalent functionalization of BNNTs for promoting their application processing in various bio-related nanotechnologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes.

Noncovalent functionalization of boron nitride nanotubes (BNNTs) in aqueous solution was achieved by means of pi-stacking of an anionic perylene derivative, through which carboxylate-functionalized BNNTs were prepared for the first time. Starting from the functionalized nanotubes, an innovative methodology was designed and demonstrated for the controlled near-surface carbon doping of BNNTs. As ...

متن کامل

Noncovalent Functionalization of Boron Nitride Nanotubes with Poly(<italic>p</italic>-phenylene-ethynylene)s and Polythiophene

Boron nitride nanotubes (BNNTs) are functionalized and solubilized in organic solvents such as chloroform, methylene chloride, and tetrahydrofuran by using conjugated poly(p-phenylene ethynylene)s (PPEs) (polymers A and B) and polythiophene (polymer C) via a noncovalent functionalization approach through strong π-π stacking interactions between the conjugated polymers and BNNTs. The functionali...

متن کامل

Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis.

Boron nitride nanotubes were functionalized with microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling between the active centre of microperoxidase-11 and boron nitride nanotubes.

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in gliobl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016